
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CF’04, April 14–16, 2004, Ischia, Italy.
Copyright 2004 ACM 1-58113-741-9/04/0004…$5.00..

The Digital Divide of Computing
Reiner Hartenstein

TU Kaiserslautern
http://hartenstein.de

ABSTRACT
This presentation urges for creating more awareness of the impact
of configware engineering onto embedded system development
and examines the requirements of overdue CSE curricular
upgrades. Because of the impact of reconfigurable computing,
configware engineering has proceeded from niche to mainstream.
Morphware has become an essential and indispensable ingredient
in SoC (System on a Chip) design and beyond. It turns embedded
system design from hardware / software co-design into configware
/ software co-design [1] [2] [3] [4]. This hot development,
supported by the fastest growing segment of the semiconductor
market [5], provides morphware [6] [7] as an alternative RAM-
based “programmable” (more precisely called: “reconfigurable”)
platform for parallelism avoiding the limitations of classical high
performance computation [8] [9] [10] caused by the von Neumann
paradigm [11] [12] [13]. The digital divide of computing
determines who is qualified to take off toward new horizons in
high performance computing, and, who is not. Currently the
typical CS graduate is not.

Categories and Subject Descriptors
C.4 [Performance of Systems]

General Terms
Performance, Design, Standardization

Keywords
Performance, Morphware, SoC, reconfigurable computing

1. A HUGE DISASTER
Meanwhile it is widely accepted, that morphware is a new
computing paradigm [14]. However, a major problem for
further progress is the lack of qualified experts. The hardware /
software chasm in professional practice and in education
causes a damage amounting to billions of EURO each year
worldwide. It is a main reason of the productivity gap in
embedded system design. This traditional hardware / software

chasm is deepening into the software / configware chasm. This
digital divide of computing is driving the entire IT area into a
huge disaster.

The amount of code for embedded systems, to be implemented
by programmers, doubles every 10 months [15] [16] and will
reach 90% of all code being written by about the year 2010
[16]. Most programmers are not qualified for this task,
preparing a disaster for the IT job market of the near future.
Currently a typical CS graduate with von-Neumann-only
mentality does not have the skills needed for hardware /
configware / software partitioning decisions, nor the
algorithmic cleverness needed to migrate an application from
software onto morphware. The highly powerful, but also
provocative new mind set of configware, hidden behind
reconfigurable computing methodology, currently is not
accessible by programmers or CS an CSE graduates with a
traditional background.

So we have a digital divide between those being able to cope
with configware and to utilize their benefits, and those, who
can’t. Morphware provides the enabling fundamentals,
methodologies, and technologies to cope with this crisis. But
widely spread awareness is still missing. Often the digital
divide will decide, who will get the job. This problem can be
solved only by a fundamental EECS curricular revolution. The
results of a decade of R&D are available for education and
commercialization: to cope with the current SoC design crisis
by a transition from hardware / software co-design to platform-
based SoC design by configware / software co-compilation.

Limitations of von-Neumann-based computing
The future of the microprocessor promises only marginal
improvements for performance, low power, and area
efficiency. Multi-threading and pipelined execution units yield
only marginal benefit for the price of substantial overhead [8].
Power dissipation is rapidly going worse. The intel Itanium 2
dissipates 130 Watts at 1,3 Volts [17]. Contemporary High
Performance Computing needs about 100W per gigaFLOPS
[83]. The von Neumann bottleneck still is the dominating
limitation [9] [10] [13] [18] [19]. We need a new computing
paradigm for morphware accelerators. Along with a good co-
compiler adding such accelerators to a microprocessor may
turn the PC into a PS (personal supercomputer). A highly
promising alternative is the microprocessor interfaced to a
suitable coarse grain array, maybe for converting a PC into a
PS (personal supercomputer). But such a PS will be accepted
by the market only, when it comes along with a good co-
compiler, the feasibility of which has been demonstrated [20]
[21] [22].

357

2. RECONFIGURABLE COMPUTING
Supporting only fine-grained reconfigurability of roughly
single bit wide configurable logic blocks (CLBs) the mapping
tools for FPGAs are mainly based on gate level methods -
similar to CAD for hardwired logic, so that hardware experts
are needed. However, from a decade of world-wide research on
Reconfigurable Computing another breed of reconfigurable
platforms is an emerging competitor to FPGAs [7] [23]:
Coarse Grain Morphware. In contrast to FPGAs, the
reconfigurable computing scene usually works with arrays
(rDPAs) of coarse-grained reconfigurable data path units
(rDPUs) with drastically reduced reconfigurability overhead:
to directly configure high level parallelism similar to
instruction-level parallelism.

In contrast to FPGAs, coarse-grained morphware implemented
in full-custom layout style may easily reach the area-efficiency
of full-custom hardwired computational data paths [24] [25].
Because the number of CFBs (configurable function blocks) is
by orders of magnitude smaller than that of CLBs or rDPUs in
FPGAs, mapping takes only minutes or less instead of hours.
Since computational data paths have regular structure
potential, full custom designs of Reconfigurable Data Path
Units (rDPUs) are drastically more area-efficient. Coarse-
grained architectures provide operator level CFBs, and very
area-efficient data path routing switches. A major benefit is
massive reduction of configuration memory and configuration
time, and drastic complexity reduction of the compilation task,
here by P&R (placement and routing). But the classical
machine paradigm like von Neumann does not support soft
data paths because “instruction fetch” (her more precisely
called: “reconfiguration”) is not done at run time.

Reconfigurable Computing vs Parallel
Processing
Classical parallelism by concurrent computing has a number of
disadvantages over the parallelism by anti machines having no
von Neumann bottleneck, what is discussed elsewhere [9]
[18] [26] [27]. In Parallel Computing, unfortunately, the
scaling of application performance often cannot match the
peak speed the resource platforms seem to provide, and the
programming burden for these machines remains heavy.
Within Concurrent Computing systems, however, the
instruction fetch and set-up of all related communication paths
happens during run time, which we do not call
reconfiguration. The main difference with respect to
performance is the amount of switching activity at run time,
which is low for reconfigurable systems and high for the
instruction-stream-driven such classical parallel computing.

Depending on the application and the architecture, massively
parallel concurrent systems may heavily suffer from
communication congestion at run time. Within Reconfigurable
Computing systems, however, the “instruction fetch” (i. e. set-
up of all computational resources and the set-up of all related
communication paths) happens before run time, what we call
reconfiguration, because it changes the effective structure of
data paths and similar resources. Compared to classical
parallelism reconfigurable computing can be much more
efficient for most application areas. Based on free-form pipe
networks, driven by multiple data streams there are hardly any
memory bandwidth bottlenecks, nor organizational overhead at
run time. This will be discussed by the following paragraphs
on data-stream-based computing.

3. DATA-STREAM-BASED COMPUTING
The instruction-stream-based von Neumann mind set does not
support configware compilation - in contrast to its rapidly
upcoming counterpart, the data-stream-based basic machine
model, the application of which has been popularized recently
by a number of projects in reconfigurable computing ([28] -
[33] and others). Already during the 80ies the systolic array
R&D scene has developed a methodology of data-stream-based
computing. In contrast to von-Neumann-based operation,
which is driven by an instruction stream (compiled from
software sources), the operation of super-systolic arrays and
other coarse grain morphware usually is driven by data streams
(compiled from flowware sources). A flowware source defines
[34] [35] [36], which data item has to hit which rDPA port at
which time. From this point of view reconfigurable computing
is a kind of innovating revival of the systolic array
methodology [37] [38] [39]. Because of using the wrong
synthesis method [13] the systolic array, an early flowware-
based paradigm, got stuck in a niche for long - until the super
systolic array [40] made it viable for being a morphware
platform.

The Anti Machine
Data-stream-based computing is the direct counterpart of von-
Neumann-based concurrent computing Data-stream-based
computing, along with its anti machine paradigm, disrupts the
fundamentals of computing science. Not only for economic
reasons it is overdue to develop a widely spread awareness on
this revolutionary development. In contrast to the von
Neumann paradigm the anti machine’s sequencer (data
counter) has moved to the memory (as part of an asM [25] [41]
[42] [44], an auto-sequencing memory bank), whereas the DPU
of the anti machine has no sequencer. The anti machine
paradigm also supports multiple data streams by multiple asMs
providing multiple data counters. That’s why the anti machine
has no von Neumann bottleneck.

The enabling technologies for anti machine architectures and
their implementations are available from many research
sources ([45] - [51]). The anti machine paradigm is useful for
both, morphware-based machines and hardwired machines
([52] etc.). The anti machine should not replace von Neumann.
We need both machine paradigms. We need morphware to
strengthen the declining von Neumann paradigm. The anti
machine is not a dataflow machine [53]. Data-stream-oriented
anti machine platforms are also available commercially, like
the XPP (Xtreme Processing Platform [54] [55] [56] [57]) from
PACT [58], coming along with compilation tools [59]. The
term dataflow machine cannot be used for the anti machine,
because it had been established by an old research area (dead,
meanwhile) having worked on arbitration-driven machine
architectures.

4. SOC DESIGN ADOPTING CS
MENTALITY

In EDA (electronic design automation) there is a trend toward
higher abstraction levels for design entry, for instance with
languages like system-C [60] [61] [62]. Even math formula are
investigated for use as EDA design entry [63] [64]. Already
HDLs (Hardware Descriptive Languages) like VHDL (an Ada
dialect), Verilog (a C dialect), or others, are languages at CS-
like higher abstraction levels, and should be taught also to CS
students. SoC design for embedded systems rapidly adopts CS

358

mentality [65]. The amount of program code implemented for
embedded systems doubles every 10 months. There is a trend
to convey Co-design of embedded computing systems from the
domain of hardware expertise over to CS methodologies. To
cope with this challenge to CS curricula the new anti machine
paradigm and new compilation methods are needed.

This is hardly possible without moving to higher abstraction
levels. Because it focuses the design space like known for
software from the von Neumann paradigm, a second machine
paradigm is needed as a simple guideline to implement
flowware (and configware). The emerging transition from
HDLs to configware sources of higher abstraction levels, like
System-C and others, encourages to go from complex design
flows to compilation techniques which are supported by an
alternative simple machine paradigm model. Also dataflow
languages having come along with the indeterministic dataflow
machine paradigm [10] could also be candidate sources for the
anti machine.

Co-Compilation
Flowware languages have close similarities to traditional
imperatively procedural languages like C or Pascal, but are
more easy to learn [2] [10] [66]. In addition to software
compilers we need configware compilation. A first step in
introducing morphware-oriented compilation techniques in
application development for embedded systems is the
replacement of EDA by compilation also for the morphware
part. We need two programming sources: configware to
program the resources, and, flowware to program the data
streams running through the resources. An early
implementation is the DPSS (Data Path Synthesis System
[40]), part of a software / configware / flowware co-compiler
[20] [21] [22], where partitioning is based on loop
transformations ([67] [68] [69] [70] and others). A newer
version of DPSS includes KressArray Xplorer, a design space
explorer to optimize DPU and rDPA architectures [72] [73]
[74].

Separate compilation of software and configware gives only a
limited support to reach the goal of good designer productivity.
Especially to introduce software / configware / flowware co-
design to CS professionals and CS curricula we need co-
compilation techniques to support application development at
high abstraction levels - as the new enabling technology for
highest performance computing, e. g. by the PS (personal
supercomputer): a symbiosis of microprocessor and anti
machine. To introduce the new business model to cope with
the current accelerator design crisis a transition from CAD to
compilation is needed, and from hardware/software co-design
to configware/software co-compilation.

5. THE COMING DICHOTOMY OF
PARADIGMS

The secret of success of CS and of the software industry is
RAM-based, because different software can easily be
downloaded to the customer’s side at any time. Stimulated by
the impact of the emerging methodology around
reconfigurable computing on the classical mind set of control-
flow-driven computing we are heading toward a dichotomy of
computing sciences - and also toward a dichotomy within IT
industry: software industry and configware industry. We are
already beginning to practice a business model, where
configware is downloaded to the morphware resident at the

customer’s site. But this paradigm switch is still widely
ignored: Configware industry did not yet really repeat the
RAM-based success story of the software industry. There is
not yet a configware industry, since mapping applications onto
morphware is still mainly practiced like a kind of hardware
synthesis method, but not really by compilation. This is an
employee qualification problem. It is time to teach the
enabling methodologies being available already for quite a
time.
Morphware provides the enabling fundamentals to cope with
this crisis. It is time to bridge the hardware / software chasm.
We need Mead-&-Conway-like rush [84]. We are already on
the road. Scientific Computing more and more uses
Morphware. The international HPC conference IPDPS is
coming along with the rapidly growing Reconfigurable
Architectures Workshop (RAW [86]). The number of attendees
from the HPC scenes coming to conferences like FPL [87] and
RAW is rapidly increasing. Special interest groups of
professional organizations are changing their scope, like e. g.
PARS [88] [89] [90] and tutorials have been held ([71], [75],
[91] - [93]).

New taxonomy needed
The growth rate of algorithmic complexity [49] is higher than
that of Moore’s law (1), whereas the growth rate of
microprocessor integration density (2) is far behind Moore’s
law). This requires more algorithmic cleverness than currently
available from CS graduates’ qualification.

To support the algorithmic cleverness required for a good
morphware-based designer productivity and quality we need
an all-embracing comparative taxonomy of architectures and
algorithms, covering classical parallel computing,
supercomputing, and reconfigurable computing. A new
taxonomy has to come along with a consolidation of
terminology. Reconfigurable versus parallel computing is also
a very important issue for terminology - to avoid confusion.
Unfortunately the distinction between parallel and
reconfigurable computing is blurred by some projects labelled
“reconfigurable”, but which, in fact, are dealing with classical
parallel computing on a single chip.

6. CONCLUSIONS
There is sufficient evidence that morphware is breaking
through as a new computing paradigm ([100] - [108]).
Breaking away from the current mind set requires more than
traditional technology development and infusion. It requires
managerial commitment to a long-term plan to explore new
thinking [85]. Morphware has just achieved its break-through
as a second class of RAM-based programmable data
processing platforms - counterpart of the RAM-based von
Neumann paradigm. Morphware combines very high flexibility
by programmability, with the performance and efficiency of
hardwired accelerators.
Already HDLs like VHDL (which is an Ada dialect), Verilog
(a C dialect), or others, are languages at CS-like higher
abstraction levels, and should be taught also to CS students.
We need more analysts and curriculum innovators. But most
current work on reconfigurable systems is specialized and is
not motivated by long term aspects - wearing blinders limiting
the view to particular applications, architectures, or tools. The
long term view, however, shows a heavy impact of
reconfigurable computing onto the intellectual infrastructures

359

of CS and CSE. This chapter has drafted a road map for
upgrading CS and CSE curricula and for bridging the gap
between procedural and structural mentality. The impact of
morphware on CS helps to achieve this by evolution, rather
than by revolution. You all should be evangelists for the
diffusion of the visions needed to go this road out of the
current crisis. It is time to bridge the configware / software
chasm. We need a Mead-&-Conway-like rush [84].

7. REFERENCES
[1] J. Becker, R. Hartenstein (sollicited paper): Configware and

Morphware going Mainstream; Journal of System
Architecture, October 2003

[2] Reiner Hartenstein (invited chapter): Morphware; in: A.
Zomaya (editor): Handbook of Innovative Computing;
Springer Verlag Heidelberg / New York - to appear in 2004

[3] Reiner Hartenstein (opening keynote): Are we ready for the
Breakthrough ?; 10th Reconfigurable Architectures
Workshop 2003 (RAW 2003), Nice, France, April 22, 2003

[4] Reiner Hartenstein (keynote address): Software or
Configware? About the Digital Divide of Parallel Computing;
18th International Parallel and Distributed Processing
Symposium (IPDPS), April 26–April 30, 2004, Santa Fe,
New Mexico, USA

[5] B. Lewis, Gartner Dataquest, October 28, 2002
[6] Reiner Hartenstein (invited embedded tutorial):

Reconfigurable Computing: the Roadmap to a New Business
Model - and its Impact on SoC Design; SBCCI 2001, 14th
Symposium on Integrated Circuits and Systems Design
(together with: SBMICRO 2001, Int'l Conf. on
Microelectronics and Packaging and: SBAC-PAD 2001, 13th
Symp. on Computer Architecture and High Performance
Computing); Pirenopolis, Brazil, September 10-15, 2001

[7] Reiner Hartenstein (invited embedded tutorial): A Decade of
Reconfigurable Computing: A Visionary Retrospective;
DATE 2001 - Design, Automation and Test in Europe,
Conference & Exhibition 13-16 March, 2001. ICM/Neue
Messe, Munich, Germany

[8] G. Koch et al.: The Universal Bus Considered Harmful; Proc.
1st EUROMICRO Symposium on the microarchitecture of
computing systems; Nice, France, 1975; North Holland, 1975

[9] Arvind et al.: A critique of Multiprocessing the von Neumann
Style; Proc. ISCA 1983

[10] J. Backus: Can programming be liberated from the von
Neumann style? A functional style and its algebra of
programs; Communications of the ACM, August 1978,
20(8):613-641.

[11] A. Burks, H. Goldstein, J. von Neumann: Preliminary
discussion of the logical design of an electronic computing
instrument; US Army Ordnance Department Report 1946.

[12] Goldstein, H., von Neumann, J., and Burks, A.: Report on the
mathematical and logical aspects of an electronic computing
instrument; Princeton Institute of advanced study, 1947.

[13] Reiner Hartenstein (invited paper - award: honorable
mention): The Microprocessor is no more General Purpose:
why Future Reconfigurable Platforms will win; Proc.
International Conference on Innovative Systems in Silicon,
ISIS'97, Austin, Texas, USA, October 8-10, 1997

[14] Reiner Hartenstein (keynote address): The impact of
Morphware on Parallel Processing; 12th Euromicro
Conference on Parallel, Distributed and Network based
Processing (PDP04); February, 11-13, 2004. A Coruña,
Spain,

[15] F. Rammig: Eingebettete Systeme; 10th anniversary
workshop, Fraunhofer EAS Dresden, April 2002

[16] N. N., Department of Trade an Industry (DTI), London, UK,
2001

[17] M. Sauer: Issues in Concept Development for Embedded
Wireless SoCs; GI/ITG FG AH - Zielplan-Workshop;
Frankfurt / Main, Germany, Sept 22, 2003

[18] G. Bell (keynote): All the Chips Outside: The Architecture
Challenge; Proc. ISCA 2000

[19] J. Hennessy: ISCA25: Looking Backward, Looking Forward;
Proc. ISCA 1999

[20] J. Becker et al.: Parallelization in Co-Compilation for
Configurable Accelerators; Proc. ASP-DAC´98

[21] J. Becker: A Partitioning Compiler for Computers with
Xputer-based Accelerators, Ph. D. Dissertation, University of
Kaiserslautern 1997 - downloadable from [22]

[22] http://xputers.informatik.uni-
kl.de/papers/publications/BeckerDiss.pdf

[23] Reiner Hartenstein (invited embedded tutorial): Coarse Grain
Reconfigurable Architecture; ASP-DAC 2001 - Asia and
South Pacific Design Automation Conference 2001, January
30 - February 2, 2001, Conference Center Pacifico,
Yokohama, Japan

[24] Reiner Hartenstein (invited paper): Trends in Reconfigurable
Logic and Reconfigurable Computing; 9th IEEE
International Conference on Electronics, Circuits and
Systems - ICECS 2002, September 15-18, 2002, Dubrovnik,
Croatia

[25] M. Herz et al. (invited paper): Memory organization for Data-
Stream-based Reconfigurable Computing; Proc. IEEE -
ICECS 2002

[26] C. Chang, K. Kuusilinna, R. Broderson: The Biggascale
Emulation Engine; FPGA 2002

[27] M. Weber et al.: MOM - Map Oriented Machine; in: E.
Chiricozzi, A. D'Amico (editors): Parallel Processing and
Applications, North-Holland, 1988

[28] J. Frigo, et al.: Evaluation of the streams-C C-to-FPGA
compiler: an applications perspective; FPGA 2001

[29] T. J. Callahan: Instruction-Level Parallelism for
Reconfigurable Computing; FPL’98

[30] E. Caspi, et al.: Extended version of: Stream Computations
Organized for Reconfigurable Execution (SCORE): FPL
'2000

[31] T. Callahan: Adapting Software Pipelining for
Reconfigurable Computing; CASES 2000

[32] H. Kwok-Hay So, BEE: A Reconfigurable Emulation Engine
for Digital Signal Processing Hardware; M.S. thesis, UC
Berkeley, 2000

[33] B. Mei et al.: Exploiting Loop-Level parallelism on Coarse-
Grained Reconfigurable Architectures Using Modulo
Scheduling; DATE 2003

[34] Reiner Hartenstein (invited paper): Data-Stream-Based
Computing: Models and Architectural Resources;
International Conference on Microelectronics, Devices and
Materials (MIDEM 2003), Castle of Ptuj, Slovenia, Oct.1-3,
2003

[35] Reiner Hartenstein (invited paper): Datastream-based
Reconfigurable Computing; Dresdner Arbeitstagung
Schaltungs- und Systementwurf (Workshop on Circuit and
Systems Design - DASS´2003), in conjunction with the
Workshop System Design Automation (SDA´2003);
Dresden, Germany, May, 8 - 9, 2003

[36] Reiner Hartenstein (invited paper): Data-Stream-based
Computing and Morphware; Joint 33rd Speedup and 19th
PARS Workshop (Speedup / PARS 2003), Basel, Switzerland,
March 19 - 21, 2003

[37] N. Petkov: Systolic Parallel Processing; North-Holland; 1992

360

[38] M. Foster, H. Kung: Design of Special-Purpose VLSI Chips:
Example and Opinions. ISCA 1980

[39] H. T. Kung: Why Systolic Architectures? IEEE Computer
15(1): 37-46 (1982)

[40] R. Kress et al.: A Data path Synthesis System for the
Reconfigurable Data path Architecture; ASP-DAC'95

[41] M. Herz et al.: A Novel Sequencer Hardware for Application-
specific Computing; Proc. ASAP ’97

[42] M. Herz: High Performance Memory Communication
Architectures for Coarse-grained Reconfigurable Computing
Systems; Ph. D. thesis, Kaiserslautern, 2001 -- downloadable
from: [43]

[43] http://xputers.informatik.uni-
kl.de/papers/publications/HerzDiss.html

[44] R. Hartenstein, Hirschbiel, K. Schmidt, M. Weber (2nd Best
Paper Award): A High Performance Machine Paradigm Based
on Auto-Sequencing Data Memory; HICSS-24, Hawaii Int'l.
Conf. on System Sciences, Koloa, Hawaii, 1991

[45] F. Catthoor et al.: Data Access and Storage Management for
Embedded Programmable Processors; Kluwer, 2002

[46] F. Catthoor et al.: Custom Memory Management Methodology
Exploration of Memory Organization for Embedded Multimedia
Systems Design; Kluwer, 1998

[47] K. Schmidt et. al.: A Novel ASIC Design Approach Based on a
New Machine Paradigm; J. SSC 1991 - invited reprint fr. Proc.
ESSCIRC 1990

[48] W. Nebel et al.: PISA, a CAD Package and Special Hardware
for Pixel-oriented Layout Analysis; ICCAD 1984

[49] R. Hartenstein et al.: A Novel Paradigm of Parallel
Computation and its Use to Implement Simple High
Performance Hardware; Proc. InfoJapan'90 (Int’l Conf.
commemorating the 30th Anniversary of the Computer
Society of Japan), Tokyo, Japan, 1990

[50] Reiner Hartenstein, Hirschbiel, K. Schmidt, M. Weber
(invited reprint of [49]): A Novel Paradigm of Parallel
Computation and its Use to Implement Simple High
Performance Hardware; Future Generation Computer
Systems 7 91/92, p. 181-198, North Holland Publishing Co.
Amsterdam / New York;

[51] H. Reinig et al.: Novel Sequencer Hardware for High-Speed
Signal Processing; Proc. Design Methodologies for
Microelectronics, Smolenice, Slovakia, Sept.1995

[52] C. Chang et al: The Biggascale Emulation Engine (Bee);
summer retreat 2001, UC Berkeley

[53] D. Gajski et al.: A second opinion on dataflow machines;
Computer, Febr. 1982

[54] V. Baumgarten, et al.: PACT XPP - A Self-Reconfigurable
Data Processing Architecture; ERSA 2001

[55] J. Becker, A. Thomas, M. Vorbach, G. Ehlers: Dynamically
Reconfigurable Systems-on-Chip: A Core-based
Industrial/Academic SoC Synthesis Project; IEEE Workshop
Heterogeneous Reconfigurable SoC; April 2002, Hamburg,
Germany

[56] J. Becker, M. Vorbach: An Industrial/Academic Configurable
System-on-Chip Project (CSoC): Coarse.grain XPP/Leon-
based Architecture Integration; DATE 2003

[57] V. Baumgarten, G. Ehlers, F. May, A. Nückel, M. Vorbach, M.
Weinhardt: PACT XPP - A Self-Reconfigurable Data
Processing Architecture; The Journal of Supercomputing,
vol. 26, no. 2, Sept. 2003, pp. 167-184, Kluwer Academic
Publishers

[58] http://pactcorp.com
[59] J. Cardoso, M. Weinhardt: From C Programs to the

Configure-Execute Model; DATE 2003

[60] T. Grötker et al.: System Design with System-C; Kluwer,
2002

[61] http://www.synopsys.com/products/cocentric_systemC/cocent
ric_systemC_ds.html

[62] http://www.systemc.org/
[63] Reiner Hartenstein, R. Jacobi, M. Ayala-Rincon, C. Llanos:

Using Rewriting-Logic Representation for Functional
Verification in Data-Stream-Based Reconfigurable
Computing; ISCI Forum on Specification and Design
Languages (FDL'03), September 23 - 26, 2003 – Frankfurt,
Germany

[64] C. Llanos, M. Ayala-Rincón, R. B. Nogueira, R. P. Jacobi, R.
Hartenstein: Modeling Dynamically Reconfigurable Systems
via Rewriting-Logic; Dagstuhl Seminar Nº 03301,
Dynamically Reconfigurable Architectures; Dagstuhl,
Germany, 20. 07.-25. 07. 2003,

[65] http://public.itrs.net/Files/2002Update/2002Update.htm
[66] A. Ast, et al.: Data-procedural Languages for FPL-based

Machines; FPL’94
[67] J. Becker, K. Schmidt: Automatic Parallelism Exploitation

for FPL-based Accelerators; Hawaii Int'l. Conf. on System
Sciences (HICSS'98), Big Island, Hawaii,1998

[68] L. Lamport: The Parallel Execution of Do-Loops; C. ACM
17,2, Febr. 1974

[69] D. Loveman: Program Improvement by Source-to-Source
Transformation; J. ACM 24,1, Jan. 1977

[70] J. Allen, K. Kennedy: Automatic Loop Interchange; Proc.
ACM SIGPLAN'84, Symp. on Compiler Construction,
Montreal, SIGPLAN Notices 19, 6, June 1984

[71] Reiner Hartenstein (invited full day course): Enabling
Technologies for Reconfigurable Computing and Software /
Configware Co-Design; CNRS internal workshop, ENST,
Paris, July 8, 2002 -

[72] U. Nageldinger et al.: Generation of Design Suggestions for
Coarse-Grain Reconfigurable Architectures; FPL 2000

[73] U. Nageldinger: Coarse-grained Reconfigurable
Architectures Design Space Exploration; Dissertation, 2001 -
- downloadable from [74]

[74] http://xputers.informatik.uni-
kl.de/papers/publications/NageldingerDiss.html

[75] Reiner Hartenstein (invited full day post conference tutorial):
Enabling Technologies for Reconfigurable Computing; 3rd
Workshop on Enabling Technologies for System-on-Chip
Development, November 21, 2001, Tampere, Finland

[76] Reiner Hartenstein M. Riedmuller, K. Schmitt, M. Weber
(invited reprint): A Novel Asic Design Approach Based on a
New Machine Paradigm; IEEE Journal of Solid State
Circuits, July 1991, invited reprint from Proc. ESSCIRC
1990, Geneva, Switzerland

[77] Reiner Hartenstein, A.Hirschbiel, M. Riedmuller, K.
Schmidt, M.Weber (best paper and best presentation award):
Automatic Synthesis of Cheap Hardware Accelerators for
Signal Processing and Image Preprocessing; 12th DAGM-
Symposium Mustererkennung (Pattern Recognition),
Oberkochen-Aalen, Germany, 1990

[78] Ulrich Nageldinger: Coarse-grained Reconfigurable
Architectures Design Space Exploration; Dissertation, TU
Kaiserslautern, 2001

[79] Michael Herz: High Performance Memory Communication
Architectures for Coarse-grained Reconfigurable Computing
Systems; Dissertation, TU Kaiserslautern, 2001

[80] Juergen Becker: A Partitioning Compiler for Computers with
Xputer-based Accelerators, Ph. D. Dissertation, TU
Kaiserslautern, 1997

361

[81] Rainer Kress: A Fast Reconfigurable ALU for Xputers, Ph.
D. Dissertation, TU Kaiserslautern, 1996,

[82] Karin Schmidt: A Program Partitioning, Restructuring, and
Mapping Method for Xputers, Ph. D. Dissertation, TU
Kaiserslautern, 1994, Shaker Verlag, ISBN: 3-8265-0495-X

[83] I. Jones: DARPA funded Directions in Embedded Computing;
THALES Reconfigurable Computing Workshop, Orsay,
France, Sept. 2003

[84] http://xputers.informatik.uni-
kl.de/staff/hartenstein/eishistory_en.html

[85] http://directreadout.gsfc.nasa.gov
[86] http://www.ece.lsu.edu/vaidy/raw04/
[87] http://fpl.org
[88] http://www.iti.uni-luebeck.de/PARS/
[89] http://www.speedup.ch/
[90] G. Lienhart: Beschleunigung Hydrodynamischer N-Körper-

Simulationen mit Rekonfigurierbaren Rechensystemen; Joint
33rd Speedup and 19th PARS Workshop; Basel, Switzerland,
March 19 - 21, 2003

[91] Reiner Hartenstein (invited lecture): Reconfigurable
Computing and its Compilation Techniques; Summer School
on "Multiprocessor Systems on Chip"; Örebro, Sweden,
August 25-27, 2003; Swedish National Program on Socware
/ Linköping University / Lund University

[92] Reiner Hartenstein (invited lecture): Distributed Memory and
Datastream-based Reconfigurable Computing; Summer
School on "Multiprocessor Systems on Chip"; Örebro,
Sweden, August 25-27, 2003; Swedish National Program on
Socware / Linköping University / Lund University

[93] Reiner Hartenstein (invited lecture): Reconfigurable
Computing and its Impact on SoC and beyond; REASON
Summer School on FPGA-based and Reconfigurable
Systems, University of Ljubljana, Ljubljana, Slovenia,
August 11-15 August 2003

[94] J. Rabaey (keynote): Silicon platforms for the next generation
wireless systems; Proc. FPL 2000, Villach, Austria

[95] Reiner Hartenstein (keynote address): Software or
Configware? About the Digital Divide of Parallel Computing;
18th International Parallel and Distributed Processing
Symposium (IPDPS), April 26– 30, 2004, Santa Fe, New
Mexico

[96] Reiner Hartenstein (keynote address): The impact of
Morphware on Parallel Processing; 12-th Euromicro
Conference on Parallel, Distributed and Network based
Processing (PDP04); February, 11-13, 2004. A Coruña,
Spain,

[97] Reiner Hartenstein (invited presentation): Morphware: neue
Perspektiven für eingebettete Systeme; SFB
Selbstoptimierende Systeme des Maschinenbau: Workshop
Selbstoptimierung und Adaption, Paderborn, Germany, 24. -
25. November 2003

[98] Reiner Hartenstein (invited paper): Data-Stream-Based
Computing: Models and Architectural Resources;
International Conference on Microelectronics, Devices and
Materials (MIDEM 2003), Ptuj, Slovenia, Oct.1-3, 2003

[99] Reiner Hartenstein (invited presentation): Toward
Reconfigurable Computing via Concussive Paradigm Shifts;
Anniversary Colloquium at Prof. Glesner's 60th Birthday;
August 29, 2003, Darmstadt, Germany.

[100] Reiner Hartenstein (invited talk): Reconfigurable Computing
a la Mead and Conway; Kolloquium, Informatik X, TU
München; August 21 2003, Munich, Germany.

[101] Reiner Hartenstein (opening keynote): A Mead-&-Conway-
like Break-through is overdue; Dagstuhl Seminar Nº 03301,
Dynamically Reconfigurable Architectures; Dagstuhl,
Germany, 20. 07.-25. 07. 2003,

[102] Reiner Hartenstein (invited presentation): Reconfigurable
Computing and its Impact; intel ORCC, intel On Chip
Reconfigurable Computing and Communication Workshop
(intel ORCC workshop), Hillsboro, Oregon, USA, May 15-
16, 2003

[103] Reiner Hartenstein (keynote address): Disruptive Trends by
Custom Compute Engines; The 12th International
Conference on Field Programmable Logic and Application
FPL 2002, September 2 - 4, 2002, La Grande-Motte
(Montpellier, France)

[104] Reiner Hartenstein (keynote address): Reconfigurable
Computing: urging a revision of basic CS curricula; The 15th
International Conf. on Systems Engineering - ICSENG02,
Las Vegas, USA, 6-8 August, 2002

[105] Reiner Hartenstein (keynote address): Stream-based
Computing - Antimatter of Informatics; First International
Conf. on Intelligent Computing and Information Systems
(ICICIS 2002), Cairo, Egypt, June 24-26, 2002.

[106] Reiner Hartenstein (keynote address): Configware / Software
Co-Design: Be Prepared For the Next Revolution! The 5th
IEEE Workshop on Design & Diagnosis of Electronic
Circuits & Systems (DDECS'02), Brno, Czech Republic,
April 17 - 19, 2002 -

[107] Reiner Hartenstein (invited presentation): Reconfigurable
Computing Architectures and Methodologies for System-on-
Chip; 3rd Workshop on Enabling Technologies for System-
on-Chip Development 2001, November 19-20, 2001,
Tampere, Finland.

[108] Reiner Hartenstein (keynote address): Reconfigurable
Computing: a New Business Model - and its Impact on SoC
Design; DSD'2001 - EUROMICRO Symposium on Digital
System Design: Architectures, Methods, and Tools, Warsaw,
Poland, September 4 - 6, 2001.

362

