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ABSTRACT
This presentation urges for creating more awareness of the impact
of configware engineering onto embedded system development
and examines the requirements of overdue CSE curricular
upgrades. Because of the impact of reconfigurable computing,
configware engineering has proceeded from niche to mainstream.
Morphware has become an essential and indispensable ingredient
in SoC (System on a Chip) design and beyond. It turns embedded
system design from hardware / software co-design into configware
/ software co-design [1] [2] [3] [4]. This hot development,
supported by the fastest growing segment of the semiconductor
market [5], provides morphware [6] [7] as an alternative RAM-
based “programmable” (more precisely called: “reconfigurable”)
platform for parallelism avoiding the limitations of classical high
performance computation [8] [9] [10] caused by the von Neumann
paradigm [11] [12] [13]. The digital divide of computing
determines who is qualified to take off toward new horizons in
high performance computing, and, who is not. Currently the
typical CS graduate is not.

Categories and Subject Descriptors
C.4 [Performance of Systems]

General Terms
Performance, Design, Standardization

Keywords
Performance, Morphware, SoC, reconfigurable computing

1. A HUGE DISASTER
Meanwhile it is widely accepted, that morphware is a new
computing paradigm [14]. However, a major problem for
further progress is the lack of qualified experts. The hardware /
software chasm in professional practice and in education
causes a damage amounting to billions of EURO each year
worldwide. It is a main reason of the productivity gap in
embedded system design. This traditional hardware / software

chasm is deepening into the software / configware chasm. This
digital divide of computing is driving the entire IT area into a
huge disaster. 

The amount of code for embedded systems, to be implemented
by programmers, doubles every 10 months [15] [16] and will
reach 90% of all code being written by about the year 2010
[16]. Most programmers are not qualified for this task,
preparing a disaster for the IT job market of the near future.
Currently a typical CS graduate with von-Neumann-only
mentality does not have the skills needed for hardware /
configware / software partitioning decisions, nor the
algorithmic cleverness needed to migrate an application from
software onto morphware. The highly powerful, but also
provocative new mind set of configware, hidden behind
reconfigurable computing methodology, currently is not
accessible by programmers or CS an CSE graduates with a
traditional background. 

So we have a digital divide between those being able to cope
with configware and to utilize their benefits, and those, who
can’t. Morphware provides the enabling fundamentals,
methodologies, and technologies to cope with this crisis. But
widely spread awareness is still missing. Often the digital
divide will decide, who will get the job. This problem can be
solved only by a fundamental EECS curricular revolution. The
results of a decade of R&D are available for education and
commercialization: to cope with the current SoC design crisis
by a transition from hardware / software co-design to platform-
based SoC design by configware / software co-compilation. 

Limitations of von-Neumann-based computing
The future of the microprocessor promises only marginal
improvements for performance, low power, and area
efficiency. Multi-threading and pipelined execution units yield
only marginal benefit for the price of substantial overhead [8].
Power dissipation is rapidly going worse. The intel Itanium 2
dissipates 130 Watts at 1,3 Volts [17]. Contemporary High
Performance Computing needs about 100W per gigaFLOPS
[83]. The von Neumann bottleneck still is the dominating
limitation [9] [10] [13] [18] [19]. We need a new computing
paradigm for morphware accelerators. Along with a good co-
compiler adding such accelerators to a microprocessor may
turn the PC into a PS (personal supercomputer). A highly
promising alternative is the microprocessor interfaced to a
suitable coarse grain array, maybe for converting a PC into a
PS (personal supercomputer). But such a PS will be accepted
by the market only, when it comes along with a good co-
compiler, the feasibility of which has been demonstrated [20]
[21] [22]. 
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2. RECONFIGURABLE COMPUTING
Supporting only fine-grained reconfigurability of roughly
single bit wide configurable logic blocks (CLBs) the mapping
tools for FPGAs are mainly based on gate level methods -
similar to CAD for hardwired logic, so that hardware experts
are needed. However, from a decade of world-wide research on
Reconfigurable Computing another breed of reconfigurable
platforms is an emerging competitor to FPGAs [7] [23]:
Coarse Grain Morphware. In contrast to FPGAs, the
reconfigurable computing scene usually works with arrays
(rDPAs) of coarse-grained reconfigurable data path units
(rDPUs) with drastically reduced reconfigurability overhead:
to directly configure high level parallelism similar to
instruction-level parallelism. 

In contrast to FPGAs, coarse-grained morphware implemented
in full-custom layout style may easily reach the area-efficiency
of full-custom hardwired computational data paths [24] [25].
Because the number of CFBs (configurable function blocks) is
by orders of magnitude smaller than that of CLBs or rDPUs in
FPGAs, mapping takes only minutes or less instead of hours.
Since computational data paths have regular structure
potential, full custom designs of Reconfigurable Data Path
Units (rDPUs) are drastically more area-efficient. Coarse-
grained architectures provide operator level CFBs, and very
area-efficient data path routing switches. A major benefit is
massive reduction of configuration memory and configuration
time, and drastic complexity reduction of the compilation task,
here by P&R (placement and routing). But the classical
machine paradigm like von Neumann does not support soft
data paths because “instruction fetch” (her more precisely
called: “reconfiguration”) is not done at run time.

Reconfigurable Computing vs Parallel 
Processing
Classical parallelism by concurrent computing has a number of
disadvantages over the parallelism by anti machines having no
von Neumann bottleneck, what is discussed elsewhere   [9]
[18] [26] [27]. In Parallel Computing, unfortunately, the
scaling of application performance often cannot match the
peak speed the resource platforms seem to provide, and the
programming burden for these machines remains heavy.
Within Concurrent Computing systems, however, the
instruction fetch and set-up of all related communication paths
happens during run time, which we do not call
reconfiguration. The main difference with respect to
performance is the amount of switching activity at run time,
which is low for reconfigurable systems and high for the
instruction-stream-driven such classical parallel computing. 

Depending on the application and the architecture, massively
parallel concurrent systems may heavily suffer from
communication congestion at run time. Within Reconfigurable
Computing systems, however, the “instruction fetch” (i. e. set-
up of all computational resources and the set-up of all related
communication paths) happens before run time, what we call
reconfiguration, because it changes the effective structure of
data paths and similar resources. Compared to classical
parallelism reconfigurable computing can be much more
efficient for most application areas. Based on free-form pipe
networks, driven by multiple data streams there are hardly any
memory bandwidth bottlenecks, nor organizational overhead at
run time. This will be discussed by the following paragraphs
on data-stream-based computing.

3. DATA-STREAM-BASED COMPUTING
The instruction-stream-based von Neumann mind set does not
support configware compilation - in contrast to its rapidly
upcoming counterpart, the data-stream-based basic machine
model, the application of which has been popularized recently
by a number of projects in reconfigurable computing ([28] -
[33] and others). Already during the 80ies the systolic array
R&D scene has developed a methodology of data-stream-based
computing. In contrast to von-Neumann-based operation,
which is driven by an instruction stream (compiled from
software sources), the operation of super-systolic arrays and
other coarse grain morphware usually is driven by data streams
(compiled from flowware sources). A flowware source defines
[34] [35] [36], which data item has to hit which rDPA port at
which time. From this point of view reconfigurable computing
is a kind of innovating revival of the systolic array
methodology [37] [38] [39]. Because of using the wrong
synthesis method [13] the systolic array, an early flowware-
based paradigm, got stuck in a niche for long - until the super
systolic array [40] made it viable for being a morphware
platform. 

The Anti Machine
Data-stream-based computing is the direct counterpart of von-
Neumann-based concurrent computing Data-stream-based
computing, along with its anti machine paradigm, disrupts the
fundamentals of computing science. Not only for economic
reasons it is overdue to develop a widely spread awareness on
this revolutionary development. In contrast to the von
Neumann paradigm the anti machine’s sequencer (data
counter) has moved to the memory (as part of an asM [25] [41]
[42] [44], an auto-sequencing memory bank), whereas the DPU
of the anti machine has no sequencer. The anti machine
paradigm also supports multiple data streams by multiple asMs
providing multiple data counters. That’s why the anti machine
has no von Neumann bottleneck.

The enabling technologies for anti machine architectures and
their implementations are available from many research
sources ([45] - [51]). The anti machine paradigm is useful for
both, morphware-based machines and hardwired machines
([52] etc.). The anti machine should not replace von Neumann.
We need both machine paradigms. We need morphware to
strengthen the declining von Neumann paradigm. The anti
machine is not a dataflow machine [53]. Data-stream-oriented
anti machine platforms are also available commercially, like
the XPP (Xtreme Processing Platform [54] [55] [56] [57]) from
PACT [58], coming along with compilation tools [59]. The
term dataflow machine cannot be used for the anti machine,
because it had been established by an old research area (dead,
meanwhile) having worked on arbitration-driven machine
architectures.

4. SOC DESIGN ADOPTING CS 
MENTALITY

In EDA (electronic design automation) there is a trend toward
higher abstraction levels for design entry, for instance with
languages like system-C [60] [61] [62]. Even math formula are
investigated for use as EDA design entry [63] [64]. Already
HDLs (Hardware Descriptive Languages) like VHDL (an Ada
dialect), Verilog (a C dialect), or others, are languages at CS-
like higher abstraction levels, and should be taught also to CS
students. SoC design for embedded systems rapidly adopts CS
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mentality [65]. The amount of program code implemented for
embedded systems doubles every 10 months. There is a trend
to convey Co-design of embedded computing systems from the
domain of hardware expertise over to CS methodologies. To
cope with this challenge to CS curricula the new anti machine
paradigm and new compilation methods are needed.

This is hardly possible without moving to higher abstraction
levels. Because it focuses the design space like known for
software from the von Neumann paradigm, a second machine
paradigm is needed as a simple guideline to implement
flowware (and configware). The emerging transition from
HDLs to configware sources of higher abstraction levels, like
System-C and others, encourages to go from complex design
flows to compilation techniques which are supported by an
alternative simple machine paradigm model. Also dataflow
languages having come along with the indeterministic dataflow
machine paradigm [10] could also be candidate sources for the
anti machine.

Co-Compilation
Flowware languages have close similarities to traditional
imperatively procedural languages like C or Pascal, but are
more easy to learn [2] [10] [66]. In addition to software
compilers we need configware compilation. A first step in
introducing morphware-oriented compilation techniques in
application development for embedded systems is the
replacement of EDA by compilation also for the morphware
part. We need two programming sources: configware to
program the resources, and, flowware to program the data
streams running through the resources. An early
implementation is the DPSS (Data Path Synthesis System
[40]), part of a software / configware / flowware co-compiler
[20] [21] [22], where partitioning is based on loop
transformations ([67] [68] [69] [70] and others). A newer
version of DPSS includes KressArray Xplorer, a design space
explorer to optimize DPU and rDPA architectures [72] [73]
[74]. 

Separate compilation of software and configware gives only a
limited support to reach the goal of good designer productivity.
Especially to introduce software / configware / flowware co-
design to CS professionals and CS curricula we need co-
compilation techniques to support application development at
high abstraction levels - as the new enabling technology for
highest performance computing, e. g. by the PS (personal
supercomputer): a symbiosis of microprocessor and anti
machine. To introduce the new business model to cope with
the current accelerator design crisis a transition from CAD to
compilation is needed, and from hardware/software co-design
to configware/software co-compilation. 

5. THE COMING DICHOTOMY OF 
PARADIGMS

The secret of success of CS and of the software industry is
RAM-based, because different software can easily be
downloaded to the customer’s side at any time. Stimulated by
the impact of the emerging methodology around
reconfigurable computing on the classical mind set of control-
flow-driven computing we are heading toward a dichotomy of
computing sciences - and also toward a dichotomy within IT
industry: software industry and configware industry. We are
already beginning to practice a business model, where
configware is downloaded to the morphware resident at the

customer’s site. But this paradigm switch is still widely
ignored: Configware industry did not yet really repeat the
RAM-based success story of the software industry. There is
not yet a configware industry, since mapping applications onto
morphware is still mainly practiced like a kind of hardware
synthesis method, but not really by compilation. This is an
employee qualification problem. It is time to teach the
enabling methodologies being available already for quite a
time.
Morphware provides the enabling fundamentals to cope with
this crisis. It is time to bridge the hardware / software chasm.
We need Mead-&-Conway-like rush [84]. We are already on
the road. Scientific Computing more and more uses
Morphware. The international HPC conference IPDPS is
coming along with the rapidly growing Reconfigurable
Architectures Workshop (RAW [86]). The number of attendees
from the HPC scenes coming to conferences like FPL [87] and
RAW is rapidly increasing. Special interest groups of
professional organizations are changing their scope, like e. g.
PARS [88] [89] [90] and tutorials have been held ([71], [75],
[91] - [93]).

New taxonomy needed
The growth rate of algorithmic complexity [49] is higher than
that of Moore’s law (1), whereas the growth rate of
microprocessor integration density (2) is far behind Moore’s
law). This requires more algorithmic cleverness than currently
available from CS graduates’ qualification.

To support the algorithmic cleverness required for a good
morphware-based designer productivity and quality we need
an all-embracing comparative taxonomy of architectures and
algorithms, covering classical parallel computing,
supercomputing, and reconfigurable computing. A new
taxonomy has to come along with a consolidation of
terminology. Reconfigurable versus parallel computing is also
a very important issue for terminology - to avoid confusion.
Unfortunately the distinction between parallel and
reconfigurable computing is blurred by some projects labelled
“reconfigurable”, but which, in fact, are dealing with classical
parallel computing on a single chip.

6. CONCLUSIONS
There is sufficient evidence that morphware is breaking
through as a new computing paradigm ([100] - [108]).
Breaking away from the current mind set requires more than
traditional technology development and infusion. It requires
managerial commitment to a long-term plan to explore new
thinking [85]. Morphware has just achieved its break-through
as a second class of RAM-based programmable data
processing platforms - counterpart of the RAM-based von
Neumann paradigm. Morphware combines very high flexibility
by programmability, with the performance and efficiency of
hardwired accelerators.
Already HDLs like VHDL (which is an Ada dialect), Verilog
(a C dialect), or others, are languages at CS-like higher
abstraction levels, and should be taught also to CS students.
We need more analysts and curriculum innovators. But most
current work on reconfigurable systems is specialized and is
not motivated by long term aspects - wearing blinders limiting
the view to particular applications, architectures, or tools. The
long term view, however, shows a heavy impact of
reconfigurable computing onto the intellectual infrastructures
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of CS and CSE. This chapter has drafted a road map for
upgrading CS and CSE curricula and for bridging the gap
between procedural and structural mentality. The impact of
morphware on CS helps to achieve this by evolution, rather
than by revolution. You all should be evangelists for the
diffusion of the visions needed to go this road out of the
current crisis. It is time to bridge the configware / software
chasm. We need a Mead-&-Conway-like rush [84].
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